Chemistry with semi-classical electrons: reaction trajectories auto-generated by sub-atomistic force fields

نویسندگان

  • Chen Bai
  • Seyit Kale
  • Judith Herzfeld
چکیده

For a century now, "Lewis dots" have been a mainstay of chemical thinking, teaching and communication. However, chemists have assumed that this semi-classical picture of electrons needs to be abandoned for quantitative work, and the recourse in computational simulations has been to the extremes of first principles treatments of electrons on the one hand and force fields that avoid explicit electrons on the other hand. Given both the successes and limitations of these highly divergent approaches, it seems worth considering whether the Lewis dot picture might be made quantitative after all. Here we review progress to that end, including variations that have been implemented and examples of applications, specifically the acid-base behavior of water, several organic reactions, and electron dynamics in silicon fracture. In each case, the semi-classical approach is highly efficient and generates reasonable and readily interpreted reaction trajectories in turnkey fashion (i.e., without any input about products). Avenues for further progress are also discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ab Initio Theoretical Studies on the Kinetics of the Hydrogen Abstraction Reaction of Hydroxyl Radical with CH3CH2OCF2CHF2 (HFE-374pc2)

The hydrogen abstraction reaction of OH radical with CH3CH2OCF2CHF2 (HFE-374pc2) is investigated theoretically by semi-classical transition state theory. The stationary points on the potential energy surface of the reaction are located by using KMLYP density functional method along with 6-311++G(d,p) basis set. Vibrational anharmonicity coefficients, ...

متن کامل

Hydrogen Abstraction Reaction of Hydroxyl Radical with 1,1-Dibromoethane and 1,2-Dibromoethane Studied by Using Semi-Classical Transition State Theory

The hydrogen abstraction reaction by OH radical from CH2BrCH2Br (R1) and CH₃CHBr2 (R2) is investigated theoretically by semi-classical transition state theory. The stationary points for both reactions are located by using ωB97X-D and KMLYP density functional methods along with cc-pVTZ basis. Single-point energy calculations are performed at the QCISD(T) and CCSD(T) levels of theory with differe...

متن کامل

Hydration free energies of cyanide and hydroxide ions from molecular dynamics simulations with accurate force fields.

The evaluation of hydration free energies is a sensitive test to assess force fields used in atomistic simulations. We showed recently that the vibrational relaxation times, 1D- and 2D-infrared spectroscopies for CN(-) in water can be quantitatively described from molecular dynamics (MD) simulations with multipolar force fields and slightly enlarged van der Waals radii for the C- and N-atoms. T...

متن کامل

Synthesis, Characterization and Catalytic Activity of Ligand Stabilized Palladium Nanoparticle: A Catalyst Compliment to the Heck Coupling Reaction

The palladium metal is the most frequently used metal because of its excellent catalytic efficiency and most flexible varying oxidation state. So,  we report  that palladium nanoparticles (Pd NPs) stabilized by a ligand (o-vanilindiphenylethanedionedihydrazone, L)  using reverse micelles method have been synthesized, while all particles are in spherical shape and ranging between 10 and...

متن کامل

The Controlled Manipulation of Parameters of the Quantum Antidot

The electron motion in a strong perpendicular magnetic field close to the impenetrable obstacle is considered by the semi-classical and quantum points of view. We investigated an influence of a shape of the forbidden region to the formation of the plateaux in the one electron energy spectrum and transmissions between dot and antidot states. In the semi-classical regime electrons can be treated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017